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ABSTRACT: Tropical cyclones are extreme events with enormous and devastating consequences to life, property, and
our economies. As a result, large-scale efforts have been devoted to improving tropical cyclone forecasts with lead times
ranging from a few days to months. More recently, subseasonal forecasts (e.g., 2–6-week lead time) of tropical cyclones
have received greater attention. Here, we study whether bias-corrected, subseasonal tropical cyclone reforecasts of the
GEFS and ECMWF models are skillful in the Atlantic basin. We focus on the peak hurricane season, July–November, us-
ing the reforecast years 2000–19. Model reforecasts of accumulated cyclone energy (ACE) are produced, and validated, for
lead times of 1–2 and 3–4 weeks. Week-1–2 forecasts are substantially more skillful than a 31-day moving-window climato-
logy, while week-3–4 forecasts still exhibit positive skill throughout much of the hurricane season. Furthermore, the skill of
the combination of the two models is found to be an improvement with respect to either individual model. In addition to
the GEFS and ECMWF model reforecasts, we develop a statistical modeling framework that solely relies on daily sea sur-
face temperatures. The reforecasts of ACE from this statistical model are capable of producing better skill than the GEFS
or ECMWF model, individually, and it can be leveraged to further enhance the model combination reforecast skill for the
3–4-week lead time.

KEYWORDS: Hurricanes/typhoons; Tropical cyclones; Forecast verification/skill; Numerical weather prediction/forecasting;
Statistical forecasting

1. Introduction

Tropical cyclones (TCs) are one of the most powerful and
destructive natural disasters on Earth. At the same time, the
economic impact of these events has steadily risen in the
United States since 1980 (NOAA 2021). Given the massive
influence these events have on life, property, and our eco-
nomies, it is no surprise that a great amount of effort has gone
into improving TC forecasts (Cangialosi et al. 2020; Klotzbach
et al. 2019; Lee et al. 2020).

Just over a decade ago, Knutson et al. (2010) stated that it
was unclear whether historical trends in TC frequency and in-
tensity can be attributed to rising levels of atmospheric green-
house gases. In their study, the focus was on the global
changes to the maximum intensity of TCs. While the attribu-
tion may remain unclear, sea surface temperatures (SSTs) in
the main development region of the North Atlantic Ocean
show a statistically significant positive trend (see Fig. 1;
Huang et al. 2017; Knapp et al. 2010, 2018; NOAA 2021).
There is, likewise, an accompanying statistically significant
increasing trend in the accumulated cyclone energy (ACE) in
the Atlantic basin (where ACE is a function of both event in-
tensity and duration). Furthermore, there is a statistically ro-
bust correlation between the yearly values of the Atlantic
ACE (Bell et al. 2000) and the costs incurred by these TCs.

Given the reasonable expectation that the conditions favoring
more extreme TC events will become increasingly likely in
the twenty-first century (Alexander et al. 2018), better subsea-
sonal forecasts can lead to better preparedness (Molina et al.
2021) and have the potential to save lives and reduce the costs
of these large-scale natural hazards.

Over the last 70 years, incredible progress has been made
with respect to short-term forecasting of TCs (Aberson 1998;
Cangialosi et al. 2020; Komaromi and Majumdar 2014; Mehra
et al. 2018). The National Hurricane Center (NHC) began in
the 1950s by making 24-h operational forecasts of TCs. Next,
over the period of the 1960s–90s, operational forecasts were
extended out through 72 h. At the end of the twentieth cen-
tury, Aberson (1998) proposed that some skill should be ex-
pected up to a 5-day or 120-h lead time. The NHC followed
up in the 2000s by providing operational forecasts out through
120 h. Cangialosi et al. (2020) recently summarized the improve-
ments of the official NHC’s forecasts over the period 1954–2019.
The authors showed that forecasts over the 2010–19 period were
better in both the track and intensity errors at 120 h than were
the 72-h forecasts over the 1990–99 period. Complementing the
gains made by numerical weather prediction, a number of statis-
tical models have used predictor information such as SSTs and
vertical wind shear of the horizontal wind to produce skillful
short-term forecasts of hurricane track and intensity (DeMaria
and Kaplan 1994; Emanuel et al. 2006).

In addition to the progress that has been made toward im-
proving short-term forecasting, seasonal forecasts of TCs
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have also long been an area of active research. Some early
work, such as Gray et al. (1993), used a statistical model to
produce seasonal TC forecasts. Since then, there have been a
variety of additional statistical, dynamical, and statistical-
dynamical hybrid methods that have been developed (Camargo
et al. 2007; Camargo and Barnston 2009; Chen and Lin 2013;
Klotzbach 2011; Wang et al. 2009). Implementing high-resolution
dynamical models has also been shown to produce skillful
forecasts of seasonal TC activity (Vecchi et al. 2014). Though
statistical and dynamical models by themselves may be skill-
ful, hybrid statistical–dynamical models can often produce
better seasonal forecasts than either method alone (Goerss
2000; Murakami et al. 2016). Many of the different worldwide
entities that currently engage in real-time seasonal TC fore-
casts were outlined in Klotzbach et al. (2019), which found
that while forecasts of North Atlantic TC activity or intensity
are often skillful when made in the month of April, the skill
improves when forecasts are made at a later date (e.g., June
or August).

More recently, several researchers have pursued subseaso-
nal TC forecasts. These forecasts have a lead time greater
than the 5-day short-term operational forecasts, and less than
seasonal forecasts (currently, the extent of subseasonal dy-
namical forecasts is constrained by the forecast lead times
of the models performing numerical weather prediction, or
about six weeks). To achieve skill at this lead time, it is
necessary to perform some amount of spatial and temporal

averaging. As a result, researchers are often aggregating the
forecasts and observations over 1- or 2-week periods and
across entire ocean basins, such as the Atlantic. Belanger et al.
(2010) and Elsberry et al. (2010) were some of the first to
show that TC forecasts could be skillful at the subseasonal
time scale. However, those studies were only performed and
validated over a couple of years. Given the reasonably slow-
moving day-to-day persistence of phenomena such as MJO
and ENSO, there has been substantial focus on the links
between those teleconnective indices and TC activity at the
subseasonal time scale (Pegion et al. 2008; Klotzbach 2010;
Jiang et al. 2018; Camargo et al. 2019; Hansen et al. 2020;
Robertson et al. 2020). Many numerical weather prediction
models are now generating longer reforecast records out
through lead times of at least four weeks. Using some of these
longer records, a number of studies have demonstrated some
level of subseasonal skill in TC forecasts in the North Atlantic
(Yamaguchi et al. 2015; Wang et al. 2018; Lee et al. 2018;
Vitart and Robertson 2018; Gao et al. 2019). Yamaguchi et al.
(2015) looked at the skills of a few dynamical models for all
global ocean basins out through two weeks. They used a 3-day
temporal-aggregation window, and demonstrated that some
basins exhibited modest skill out through two weeks, and that
the ensemble mean of the models was superior to any model
alone. Provided the limited success of subseasonal forecasts,
which can vary by model, basin, and lead time, Wang et al.
(2018) experimented with partitioning the skill as a function

FIG. 1. (a) The time series (1901–2021) of yearly sea surface temperatures averaged across the main development region of the North
Atlantic. The trend line is also plotted, which is statistically significant (p , 0.01). (b) The time series of accumulated cyclone energy
(ACE) in the Atlantic (blue bars) and the inflation-adjusted costs of these events in the United States (orange line). The time series of the
costs begins in the year 1980. As with (a), the trend line of ACE is shown, and it is statistically significant (p , 0.01). (c) The plots of
paired years from (a) and (b), and (d) the pairings of ACE and the square root of cost values from (b) for the period 1980–2021.
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of different tropical cyclogenesis pathways. They concluded
that strong and weak tropical transition pathways had lower
predictability than pathways such as low-level baroclinic or
trough induced. Lee et al. (2020) found that subseasonal TC
forecasts were quite capable of reproducing the seasonal cycle
with the best performance being seen by the ECMWF model.
However, these same models lacked skill beyond approxi-
mately two weeks when looking at the skill with respect to the
month itself. Essentially, the authors found that these models
were skillful in their ability to pick up on the seasonal variabi-
lity of TC frequency/intensity, but that the models were not
able to successfully predict whether events in September, for
example, will be above or below normal with respect to a
climatological September.

In this paper, we evaluate the subseasonal skill of the bias-
corrected and cross-validated reforecasts of the GEFS and
ECMWF models. We do this for reforecasts of ACE at lead
times of 1–2 weeks (days 1–14) and 3–4 weeks (days 15–28),
and using two regions: 1) a larger region encompassing the
North Atlantic basin, and 2) a smaller subregion in the west
Atlantic. A probabilistic forecast skill metric is used to deter-
mine if bias-corrected TC reforecasts of the GEFS and the
ECMWF, whether individually or in combination, are an im-
provement over climatology. We also investigate how the skill
varies throughout the peak hurricane season July–November.
Skill values are computed with respect to a 31-day climatological
window that reflects the variability of TCs throughout the peak
season. Ultimately, our aim is to better understand where and
when we have subseasonal skill, and subsequently we plan to
transition these methods to produce real-time operational fore-
casts. Last, we compare the forecast skills of the GEFS and
ECMWF models, along with their combination, to a statistical
model that we developed that uses near-real-time daily SSTs.

2. Data

Observational TC data were obtained from IBTrACS
(Knapp et al. 2010, 2018). The IBTrACS dataset includes the
maximum sustained wind speeds and the minimum pressure
values, along with the associated latitude and longitude coor-
dinates, for each observed tropical cyclone over the period
1842–present. By the middle of the twentieth century, the da-
taset exhibits greater coverage and accuracy. Wind speeds
and the associated coordinates are provided every six hours
for speeds of three knots and greater. Using the IBTrACS da-
taset, running 2-week ACE quantities are calculated as

ACEt 5 1024 ∑
t514

t51
y2t , (1)

where y are maximum sustained wind speeds at 6-h intervals,
when wind speeds are 35 kt (1 kt ’ 0.51 m s21) or greater,
and the summation is performed over 2-week periods with
t being day 1 of the 14-day period, where t 2 (1 January 2000,
2 January 2000, …, 31 December 2019). These quantities of
ACE are calculated using the wind speeds that fall within the
spatial boundaries of the Atlantic and west Atlantic regions
(see Fig. 2). In addition to the entire North Atlantic region,

we will also compare the forecast skill in the west Atlantic re-
gion. This is because a TC that is found in the west Atlantic
subdomain has a greater likelihood of making landfall in the
United States than a TC found anywhere in the larger Atlantic
domain. Using the IBTrACS dataset, we found that if a TC
event had at least one time step with a wind speed of 35 kt
or greater in the Atlantic domain, then there was approxi-
mately a 6% chance that that same event made landfall in the
contiguous United States (CONUS) with wind speeds also
equal to or exceeding 35 kt. That means for every 16 events
that took place in the Atlantic region, there is approximately
one that will have made landfall in CONUS. In contrast, we
found that approximately one in nine west Atlantic events
will have made landfall in CONUS. The likelihood of an event
making landfall is about 80% greater when originating from
the west Atlantic than an event originating anywhere in the
larger Atlantic domain.

Over the period 2000–19, 96% and 95% of the total annual
ACE falls within the months of July–November, for the Atlantic
and west Atlantic regions, respectively (see Table 1). As a result,
we focus our analysis on the subseasonal forecast performance
during these months that comprise the height of North Atlantic
hurricane season.

TC forecasts were computed from the raw GEFS and
ECMWF output data from their ensemble set of reforecasts
based on the algorithm presented in Camargo and Zebiak
(2002). The TC events flagged by the algorithm were archived
over their reforecast period 2000–19. Version 12 of the GEFS
model was used to produce a fixed set of subseasonal refore-
casts incremented weekly starting on 5 January 2000 and end-
ing on 25 December 2019. Since the authors plan to transition
these subseasonal forecasts into a real-time framework, it is
important that our methodology can be implemented with
real-time data. So, even though this study focuses on the sub-
seasonal skill using the reforecasts, we additionally share de-
tails of the real-time data. Real-time GEFS forecasts are
produced daily (Guan et al. 2022). In contrast, the ECMWF
model with lead times greater than 10 days is run twice per
week. For each forecast date, the ECMWF model is retro-
spectively run for the prior 20 years. For example, model fore-
casts made on 2 January 2020 would also be accompanied by
reforecasts for 2 January 2000–19. The reforecasts of the
ECMWF were produced using IFS Cycle 46r1 prior to 1 July,
and IFS Cycle 47r1 beginning on 1 July. The GEFS and
ECMWF models produced reforecasts with 11 ensemble
members (while there are 31 and 51 ensemble members
with the real-time forecasts, respectively). Similarly to the
IBTrACS dataset, maximum sustained wind speeds and the
minimum pressure values were calculated for each TC, for
both GEFS and ECMWF, along with the associated latitude
and longitude coordinates. The algorithm ingested data at
0.58 latitude by 0.58 longitude resolution from both models,
and produced TC reforecasts for the GEFS at a 6-h temporal
resolution and a lead time of up to 30 days, while it similarly
produced reforecasts for the ECMWF at a 12-h temporal res-
olution and a lead time of up to 32 days. ACE is computed
over 6-h intervals, while the temporal resolution of the
ECMWF model is every 12 h. As a result, Eq. (1) is still used
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to calculate ACE for ECMWF using the 12-h data, but the re-
sulting quantity is then also multiplied by a factor of 2.

SST data are obtained from the NOAA High Resolution
Optimum Interpolation SST (OISST) dataset (Reynolds et al.
2007; Huang et al. 2021) provided by the NOAA/OAR/ESRL
PSL, Boulder, Colorado, from their website at https://psl.
noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html. These

data are produced at a daily temporal resolution beginning
in September 1981 and they have a spatial resolution of
1/48 latitude 3 1/48 longitude.

Validation skill metric

We use the continuous ranked probability skill score
(CRPSS) metric to evaluate the probabilistic performance of
the model forecasts of ACE. CRPSS is a function of the fore-
casted and climatological continuous ranked probability score
(CRPS). It is defined as

CRPSS 5 1 2
∑CRPSfcst
∑CRPSclim

, (2)

where the CRPSfcst and CRPSclim are the continuous ranked
probability scores of the model forecasts and climatology, re-
spectively. CRPSfcst is defined as

CRPSfcst(t) 5
�‘

2‘
[ACEfcst(x,t) 2 ACEobs(x,t)]2 dx, (3)

where ACEfcst is the cumulative distribution function (CDF)
of forecasted ACE values at time t, and ACEobs is the CDF

FIG. 2. Model reforecasted and observed wind speeds are plotted in the Atlantic (region
bounded by the solid gray line) and west Atlantic (region bounded by the dashed white line)
basins. These values are the wind speeds at all 6-h time steps over the 2-week period 21 Sep–
4 Oct 2000.

TABLE 1. Monthly averaged ACE over the period 2000–19.

Month Atlantic ACE West Atlantic ACE

Jan 0.5 0.2
Feb 0.0 0.0
Mar 0.0 0.0
Apr 0.1 0.1
May 0.7 0.7
Jun 2.3 2.0
Jul 4.8 3.7
Aug 22.6 13.4
Sep 52.4 28.0
Oct 19.9 13.7
Nov 5.2 3.2
Dec 1.0 0.3
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(here just a single step) of observed ACE at time t. Similarly,
CRPSclim is defined as

CRPSclim(t) 5
�‘

2‘
[ACEclim(x,t) 2 ACEobs(x,t)]2 dx, (4)

where ACEobs is the same as above, and ACEclim is the CDF
of the climatological distribution of ACE values at time t. A
CRPSS value of one reflects perfect forecasts, while a value of
zero indicates the forecasts performed as skillfully as climatol-
ogy, and negative values can be interpreted as the model fore-
casts performing worse than climatology. Model forecasts that
perform better than climatology will have a CRPSS of greater
than zero. We evaluate the skill of the reforecasts using the
reforecast dates of the GEFS model during the months of
July–November over the 2000–19 period of record.

3. Methods

a. Bias correction of the GEFS and ECMWF forecasts

Ultimately, our goal is to establish how skillful the TC fore-
casts of the GEFS and ECMWF models are over the height of
the hurricane season in the North Atlantic, and subsequently
transition these forecasts to a real-time operational product.
To this end, we first want to establish how skillful these model
forecasts are after correcting biases in the mean and variance.
Then, we additionally compare the skill of a combination of
the bias-corrected ensemble forecasts of these two models to
that of each individual model alone.

Figure 2 shows all of the modeled and observed TC wind
speeds for the same 2-week period. In Fig. 2a, reforecasted
wind speeds are plotted for the GEFS model initialized on
6 September 2000. These wind speeds are for the 3–4-week
(days 15–28) lead time that corresponds to 21 September–
4 October 2000. All of the values that fall over this 2-week
period within the larger Atlantic domain (demarcated by the
gray line) are used to calculate the biweekly accumulation of
ACE using Eq. (1). Likewise, all of the values that fall within
the west Atlantic domain (the dashed white line) are used to
calculate a separate biweekly accumulation of ACE. This pro-
cess, discussed here and illustrated in Fig. 2, is repeated for all
reforecast time steps. As a result, we then have four different
time series: 1) GEFS reforecasts of 2-week accumulated ACE
for the Atlantic, 2) GEFS reforecasts of 2-week accumulated
ACE for the west Atlantic, 3) ECMWF reforecasts of 2-week
accumulated ACE for the Atlantic, and 4) ECMWF refore-
casts of 2-week accumulated ACE for the west Atlantic. This
is done independently for each of the 11 ensemble members
of both models.

As we pointed out in section 2, the ECMWF forecasts are
made twice a week and always on the same date (e.g., 2 January
for the period 2000–19). This is in contrast to the GEFS
reforecasts that are made once a week over the period of
2000–19 and starting on 5 January 2000. For any lead time,
such as 1–2 weeks (days 1–14) or 3–4 weeks (days 15–28),
the GEFS and ECMWF forecast time series, respectively,
have lengths of 1043 and 2100 values. Provided that we have
the reforecasts for 11 ensemble members, we have matrices

of the size (1043, 11) and (2100, 11) for our two models at
our desired lead time, and for both the Atlantic and west
Atlantic regions. For each GEFS reforecast date, we find the
most recent preceding ECMWF reforecast date. Again, this
is because we are validating the forecast performance with re-
spect to the GEFS time series. The ECMWF reforecast date
can fall on the same date as the GEFS or up to three days
prior. Note that this is also the scenario one would encounter
with real-time forecasts; the GEFS real-time forecasts are
made daily, while the ECMWF real-time forecasts along with
new reforecasts are made twice per week.

Continuing with the example illustrated in Fig. 2, consider
that we want to make a probabilistic forecast of week-3–4 ACE
for the Atlantic region, using the GEFS model, with a refore-
cast date of 6 September 2000. Our validation period for this
particular forecast time is 21 September–4 October 2000. First,
we establish the “centroid” of the validation period, where we
define the centroid to fall on the eighth day of the 14-day
period. That would be 28 September 2000. We then have en-
semble forecasts for this time step in the current year (i.e.,
2000 in this case), and we denote these by the vector xfcst.
To remove systematic biases, we first perform a square root
transformation:

xTfcsti
5

������
xfcsti

√
for i 2 (1,…, 11), (5)

in order to reduce the positive skewness of each ensemble
member i. The transformed forecast vector xTfcst is then
shifted and scaled such that the first two moments of the cli-
matology of bias-corrected, transformed ensemble forecasts
xTfcstBC

match those of the climatology of square root trans-
formed observations yT:

xTfcstBC
5 (xTfcst 2 xTRfcst) 3

syT

sxTRfcst

1 yT , (6)

where xTRfcst, yT and sxTRfcst
, syT

are, respectively, the means
and standard deviations of the climatology of transformed re-
forecasts and observations. For further details concerning
some common bias correction methods and their implementa-
tion, please refer to papers such as Teutschbein and Seibert
(2012) and Switanek et al. (2017). In a nutshell, this method
maps the mean and variance of the modeled distribution to
match the mean and variance of the observed distribution by
a shifting and scaling transformation. If the model has a posi-
tive bias in the mean and a negative bias in the variance, the
model PDF (i.e., probability density function) is to the right
and more narrow than that of the observed PDF. The bias
correction shifts the PDF to the left and additionally stretches
out the distribution to more accurately follow the observed
mean and variance.

As indicated by the subscript “Rfcst”, these moments are
estimated from reforecasts (and corresponding observations),
which in our example are composed from the years 2001–19.
In the general cross-validation setting, they would be com-
posed from all reforecast years except the one for which the
bias-corrected forecast is constructed. To increase the sample
size used to calculate these statistics we find all reforecasts
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that fall within 15 days on either side of the calendar month
and day. In our example, those would be all reforecasts with
valid dates (centroids) between 13 September and 13 October
for the years 2001–19. We make the assumption that the per-
formance of any one ensemble member (1, 2, …, 11) is not
systematically superior to the performance of any other en-
semble member. Therefore, we treat all of the forecasts from
each ensemble member as equally likely. The final, bias-
corrected ensemble is obtained by back-transforming the
elements of the moment-adjusted, transformed forecast from
Eq. (6) via

xfcstBCi
5 (xTfcstBCi )

2 for i 2 (1,…, 11): (7)

We calculate CRPSfcst(t) [from Eq. (3)] using the elements of
xfcstBC

at time step t along with the observed Atlantic ACE
value at the same time step. Similarly, we calculate CRPSclim(t)
using a climatological distribution built from values of y in our
leave-one-year-out cross-validated framework. We repeat the
same procedure for all time steps and all years. Then, using
Eq. (2), we can obtain Atlantic and west Atlantic CRPSS val-
ues for both the GEFS and ECMWF. This is done for both
reforecast lead times of weeks 1–2 and weeks 3–4.

We also measure the CRPSS of the combined forecast of
the two models. This is calculated as pointwise average of the
respective empirical CDFs resulting from the bias-corrected
ensemble forecasts of ACE from each of the two models. As
a result, we obtain the cross-validated probabilistic skill of the
forecasts of GEFS, ECMWF, and the combination of the two.

b. A statistical benchmark

Beyond evaluating the bias-corrected dynamical model re-
forecasts of the GEFS, ECMWF, and the combination of
those two models, we want to evaluate whether their forecast
skill is an improvement with respect to a simpler statistical
benchmark model. Daily SSTs (Reynolds et al. 2007; Huang
et al. 2021) available at initialization time are used to produce
statistical forecasts of ACE for weeks 3–4. Such a basic statistical
model cannot be expected to be competitive at short lead times
where predictability is still relatively high, and we therefore focus
on comparing these statistical benchmarks to week-3–4 forecasts
of GEFS and ECMWF.

After performing our analysis using data at both 0.258 and
58 resolutions, it was found that using the higher resolution
did not yield better forecast skill. Therefore, processing the
SST data began with spatially upscaling to 58 latitude 3

58 longitude. Next, we constrain the spatial domain to include
all longitudes and latitudes between the equator and 508N.
The SST statistical forecast model is a two-step process:

1) Construct a single predictor by spatially aggregating the
SST data across all grid points that correlate strongly with
the predictand (i.e., ACE in the Atlantic/west Atlantic
region).

2) Use an analog method to construct an ensemble fore-
cast for the predictand based on this aggregated SST
predictor.

In the case of the statistical forecasts, we can leverage a
larger observed sample size than the dynamical reforecasts
(with daily SST and ACE data over the period 1982–2020).
This study’s focus is on the July–November peak Atlantic hur-
ricane season, and as a result, 39 years (i.e., 1982–2020) of
SST data and TC data are used to build the statistical forecast
model. Consider an example case where SSTs are used to
make a forecast on 26 July of ACE over the period 9 August
to 22 August or a 3–4-week (15–28-day) forecast. To be con-
servative about the data availability and the typical lag time
therein (;2–3 days), we use data from three days prior. In
our example case, we would thus use SST data on 23 July to
make a forecast for 9 August to 22 August, but still consider
this a 3–4-week forecast for validation purposes. Our temporal
centroid}as above, the eighth day in the 14-day period}of the
observed ACE for this forecast is 16 August. Similarly to the
method described in section 3a, we increase the training sample
size by considering additional predictor-predictand pairs and
collecting data from a 31-day window. Due to the time lag be-
tween the predictor (23 July, in our example) and predictand date
(16 August, in our example), the time window is defined around
those two dates, respectively, thus keeping the time lag fixed.

Denote by Pt,g,w the SSTs for year t 2 (1982, …, 2020), grid
cell g 2 (1, …, 559), and time-window index w 2 (215, …, 15).
Standardized SST data PZ

t,g,w are obtained via

PZ
t,g,w 5 (Pt,g,w 2 Pg)/sPg

, (8)

where Pg and sPg
are, respectively, the mean and standard

deviation of SST at grid cell g. These statistics are calculated from
training data over the time-window index w 2 (215, …, 15) and
all years except the one for which the forecast is constructed. For
example, to calculate PZ

t,g,w for the year 1982, training data from
the years 1983–2020 is used to calculate the standardization
statistics.

To illustrate the construction of a single SST predictor, we fo-
cus on the example period 9–22 August (centered on 16 August)
in the year 1982. At each SST grid cell, compute the correla-
tion coefficient between the associated standardized SSTs and
the ACE predictand, using the training data composed from
the years 1983–2020 and across the 31-day time window. The
field of correlation coefficients are plotted in Fig. 3a, where
the title of Fig. 3a reflects the 31-day window centered about
16 August. A single SST predictor is then constructed by aver-
aging the standardized SST values corresponding to the 10%
of grid cells with the highest correlation with the predictand
(see Fig. 3 for an illustration). It may be counterintuitive to
aggregate SSTs in that way, i.e., across potentially different
parts of the globe, but we note that this is equivalent to re-
gressing the individual SST values against the predictand un-
der the constraint of a shared regression coefficient, and then
averaging the corresponding predictions.

This aggregated SST predictor is now used in a second
step as the single predictor in an analog method (Hamill and
Whitaker 2006; Delle Monache et al. 2013). Training data are
composed as above, i.e., using leave-one-year-out cross-validation
and a 31-day time window around the forecast date. For each
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individual forecast date, Euclidean distances are calculated be-
tween the aggregated SST predictor associated with that date and
the aggregated SST predictors in the training dataset. The third of
the training dates with the shortest distance are selected, and a
forecast ensemble is formed with the ACE values corresponding
to these training dates (with the appropriate time-lag between
SST predictors and the ACE centroid). An empirical CDF can be
constructed from this ensemble and is used to compute values of
CRPSS, using the same forecast validation dates as the GEFS
model. To illustrate this step, one can imagine a case where the
current year’s forecast for the validation date, 16 August, is one
standard deviation above normal (i.e., the point has a value of 1.0
along the x axis in Fig. 3c). Excluding the green points from the
current year, the forecast ensemble distribution is constructed by
using theACE values along the y axis that correspond to the near-
est third of points along the x axis, given the current aggregated
SST predictor value of 1.0.

We should additionally comment on the use of other pre-
dictors. We also investigated using Niño-3.4 and different
MJO time series as predictors. However, we found that none
of these yielded any positive-valued probabilistic skill for ei-
ther the Atlantic or the west Atlantic regions.

4. Results

a. Bias-corrected forecasts of GEFS and ECMWF

In Figs. 4a and 4b, the skill of week-1–2 bias-corrected Atlantic
ACE reforecasts is shown for the GEFS and ECMWF models.
The CRPSS values are the average skill over a series of 31-day
moving windows centered on the dates shown, where the sample
size at each time step is between 87 and 90 (which is approxi-
mately equal to the window size divided by the frequency of the
forecasts multiplied by the number of reforecast years, which is
31/7 3 20). As previously mentioned, we focus our analysis on
the months July–November. Both the bias-corrected forecasts
of the GEFS and ECMWF are seen to exhibit good skill through-
out the season for week-1–2 forecasts. The bias-corrected skill of
the combined forecasts of GEFS and ECMWF can be seen in
Fig. 4c (i.e., average of CDFs). One can observe a noticeable im-
provement in skill with the combined forecast with respect to the
GEFS and ECMWF alone, where the CRPSS in this case is
greater than 0.20 for every time window over the entire season.
The CRPSS values, computed over the entire season, are summa-
rized in Table 2. Due to the strong seasonality of ACE, these sea-
sonally computed skill values are automatically weighted more

FIG. 3. (a),(b) The top 10% of SST grid cells (outlined by the black boxes), for two different 31-day time windows,
with the greatest correlation over the years 1983–2020. The SST grid cells (outlined in black) are then used to produce
one year’s worth of aggregated SST predictors. (c),(d) The aggregated SST predictors, for all years, are plotted against
observed ACE for the two time windows, respectively.
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heavily in the months of August–October, for example, than the
months of July or November. This results from the fact that the
errors between forecasted and climatological ACE are greater
when the values of observed ACE are larger. Figure 4d reflects
this seasonality of observed ACE, and it plots the pairings of the
combined forecast skill on the x axis along with the average
biweekly accumulations of observed ACE on the y axis (the
2-week ACE values are averaged over the 31-day window and

over the 20-yr reforecast period of record, 2000–19). With Fig. 4d,
one can now evaluate the skill as a function of the intensity of
TCs (one can see that the points are concentrated on the right
side of the subplot, indicating positive skill throughout the sea-
son). Here, we have a couple of notes concerning the skill. First, a
Monte Carlo experiment was implemented using randomly se-
lected standardized forecasts, and it was determined that any sea-
sonally computed CRPSS value greater than 0.00 was statistically
significant (p value , 0.01). And second, the week-1–2 forecast
skills of the raw (or the non-bias-corrected) reforecasts are not
shown. For weeks 1–2, the raw reforecasts performed about as
well as the bias-corrected ones. However, for weeks 3–4, the raw
reforecasts exhibited poorer performance in contrast to those of
the bias-corrected reforecasts (see the discussion of Fig. 5). As a
result, we compare the skills across the common framework of
using the bias-corrected reforecasts.

Figures 4e–h show week-1–2 reforecast skill for the west
Atlantic region. In the case of this smaller domain, we see an
accompanying decrease in skill (see Table 2 as well). Similarly
to the larger Atlantic region, there is modestly better skill with

FIG. 4. The seasonality of the CRPSS skill metric is plotted for the Atlantic and west Atlantic basins for week-1–2
reforecasts. (a)–(c) The skill of the forecasts in the Atlantic when using the GEFS, ECMWF, and the combination of
the GEFS and ECMWF (i.e., average of CDFs), respectively. (d) The combined CDF forecast skills from (c) are plot-
ted on the x axis against the observed average 2-week accumulated ACE on the y axis. (e)–(h) As in (a)–(d), but for
the west Atlantic.

TABLE 2. The CRPSS values, computed over the entire
season for the GEFS, ECMWF, and the combination of the two
models (i.e., average of CDFs). The skill scores are split by
region for the lead times of 1–2 weeks and 3–4 weeks.

Atlantic West Atlantic

Weeks 1–2 Weeks 3–4 Weeks 1–2 Weeks 3–4

GEFS 0.219 0.021 0.180 20.025
ECMWF 0.197 0.026 0.168 20.037
Average of CDFs 0.297 0.075 0.262 0.026
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the GEFS model than with the ECMWF. However, the GEFS
model does not perform statistically significantly better, and the
skill discrepancy most likely can be explained by the fact that we
are anchoring our forecast times to the GEFS reforecast dates.
This was necessary to simulate a forecast environment that can
be applied daily and in real time. As we have already pointed
out, we use the most recently available ECMWF reforecast for
every GEFS reforecast date. Therefore, with our validation
framework, the ECMWF 1–2-week forecasts have a lead time,
on average, of 3–16 days (in contrast to 1–14 days for the GEFS).

In Fig. 5, we can see the results of the week-3–4 reforecasts.
One can observe a marked decrease in skill between refore-
casted ACE between weeks 1–2 and weeks 3–4 (also, see
Table 2). However, the combined forecasts are still more skill-
ful than climatology for much of the season for both the
Atlantic and the west Atlantic. The periods where the com-
bined forecasts perform worse than climatology can be seen
at the end of September through early October and separately
in the last half of November. Here, we make a couple of notes
on the framework which we have used to compute the skill
scores. First, we find that the bias-corrected model reforecasts
perform better than the raw reforecasts. For weeks 3–4, the
CRPSS values are 20.006 and 20.114, respectively, for the
raw reforecasts of the GEFS and ECMWF in the Atlantic,

and 20.041 and 20.137, respectively, for the raw reforecasts
of the GEFS and ECMWF in the west Atlantic. And second,
the ECMWF model often has a disadvantage by analyzing the
skill with respect to the GEFS reforecast dates. To be clear,
the skill of the ECMWF model is better at shorter lead times.
The reforecasts with lead times of 15–28 days are more skillful
than those of 18–31 days, for example. Again, we chose to
evaluate the model performance in a framework that can be
applied in real time. And currently, real-time week-3–4 fore-
casts of the GEFS are performed daily, while ECMWF produ-
ces these at a frequency of twice per week. To produce
forecasts for each day, then, some reforecast dates must rely
on 1-, 2-, or 3-day-old ECMWF forecasts. We have simulated
that real-time scenario with our reforecast evaluation. How-
ever, it can be of interest to compare the week-3–4 reforecast
skills from Table 2 to those where ECMWF is at less of a dis-
advantage. Therefore, we compute CRPSS using only the
GEFS reforecast dates where ECMWF had produced refore-
casts on that day or one day prior. Using that smaller sample,
the CRPSS values are 0.018 and 0.049, respectively, for the
GEFS and ECMWF in the Atlantic, and 20.048 and 20.041,
respectively, for the GEFS and ECMWF in the west Atlantic.
Using only the 15–28- and 16–29-day reforecasts, the skill
of the ECMWF model modestly outperforms the GEFS.

FIG. 5. As in Fig. 4, but for week-3–4 reforecasts.

S W I T ANEK E T A L . 365FEBRUARY

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:38 PM UTC



However, this difference in skill between the two models was
not found to be statistically significant.

b. Impact of ensemble size on forecast skill

Figure 6 illustrates the impact that the ensemble size
(Richardson 2001) has on TC forecast skill for weeks 3–4.
This is shown for the Atlantic basin and using the GEFS and
ECMWF forecasts, along with their combination. To find the re-
lationship between ensemble size and skill, for each model we
randomly selected a subset of the total number of ensembles.
This was done 20 times for each ensemble size between 3 and
11. For ensemble size of 5, for example, we randomly selected 5
of the 11 ensemble members and calculated the corresponding
CRPSS. Then, we repeated that procedure another 19 times.
The average season-total CRPSS over the 20 randomly selected
ensemble subsets are then plotted as a function of the ensemble
size. One can clearly observe that the skill of the reforecasts in-
creases as our ensemble size grows. The skill continues to in-
crease at a relatively constant rate between 8 and 11 members,
indicating that more ensemble members from both the GEFS
and the ECMWF models would yield further gains in predictive
skill at a lead time of 3–4 weeks. However, the gains of the
model combination appear more asymptotic between 10 and
11 members. Additionally, the real-time forecasts, respectively,
contain 31 and 51 members for the GEFS and ECMWFmodels.
One would expect that with the real-time ensemble size, the skill
would reach saturation as a function of ensemble size. However,
in order to more accurately determine when additional ensem-
bles do not provide additional skill, more ensembles in the refor-
ecast time period are needed.

c. A statistical benchmark of subseasonal ACE based on
sea surface temperature

Beyond evaluating the bias-corrected dynamical model
forecasts of the GEFS, ECMWF and their combination, we

want to compare their week-3–4 forecast skill to a simpler sta-
tistical benchmark model.

Figure 7 summarizes the monthly aggregated CRPSS values,
for the GEFS, ECMWF, the statistical OISST model, the
GEFS 1 ECMWF (the average of those two CDFs), and the
GEFS1 ECMWF1 OISST (the average of those three CDFs).
The OISST statistical model exhibits superior performance
than either the GEFS or the ECMWF models, individually.
The only cases where the statistical model does not perform
better, is for the months of July and September, in the Atlantic,
for the ECMWF model. In those cases, the ECMWF model
is modestly more skillful than the OISST statistical model.
In contrast, the statistical model has substantially more
skill in the later months of October and November. The
GEFS 1 ECMWF 1 OISST combination is more skillful
than the GEFS 1 ECMWF combination in all cases, with
some amount of positive skill seen in all months for both the
Atlantic and west Atlantic regions.

Table 3 presents the skills of the different models computed
over the entire season for weeks 3–4. The OISST statistical
model was the best performing individual model for both
the Atlantic and west Atlantic. These improvements of the
OISST statistical model were found to be statistically signifi-
cant (with p, 0.01 and p, 0.01, respectively, for the Atlantic
and west Atlantic). Similarly, the best performing combina-
tion was the combination of the three models (with p , 0.05
and p, 0.01, respectively).

5. Conclusions

This paper finds that the TC reforecasts of the GEFS and
ECMWF models are skillful at lead times up to 3–4 weeks.
We evaluated the performance of the reforecasts over the pe-
riod 2000–19 for the season July–November. Additionally, the
combined reforecasts of the two models are more skillful than
either model alone. The TC reforecast skill of the combined

FIG. 6. The impact of ensemble size on the skill of the GEFS and ECMWF forecasts of ACE.
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model, for weeks 1–2, performs much better than climatology
in both the Atlantic and west Atlantic regions. For week-3–4
reforecasts, there are times throughout the peak hurricane
season where the combined model has historically exhibited

positive skill, though not at all times. At this longer 3–4-week
lead time, there is modest positive forecast skill for both the
Atlantic and west Atlantic regions in July, August, the first
half of September, the last half of October, and the first half
of November. In contrast, the reforecasts from the other times
of the season (i.e., from middle of September through the
middle of October, and the last half of November) were found
to perform worse than climatology. The reforecasts in the
larger Atlantic basin consistently exhibited greater skill than
the west Atlantic region. This is true for both the 1–2- and
3–4-week reforecasts. This result is not surprising, since we
should expect some amount of skill to be gained by increased
spatial averaging.

Skill was additionally found to increase as a function of en-
semble size for the week-3–4 reforecasts. One way to achieve
further gains in TC predictive skill, would be to increase the
ensemble sizes of the GEFS and ECMWF reforecasts. That
way, one can more easily determine how many ensemble

FIG. 7. The monthly aggregated skills of the different models are plotted. The colors correspond to different models, and the width of the
bars reflect the average magnitude of ACE during that month (i.e., September is the most active month, with the greatest average ACE, and
hence, it has the largest width). The performances for the different models are plotted for (a) the Atlantic region and (b) the west Atlantic.

TABLE 3. The CRPSS values for weeks 3–4, computed over
the entire season, using years 2000–19, for the individual GEFS,
ECMWF, and OISST statistical models. Also, the skill scores are
shown for the combinations of the two GEFS 1 ECMWF, and
all three GEFS 1 ECMWF 1 OISST. The best performing
single model and combination are highlighted in bold text.

Atlantic West Atlantic

GEFS 0.021 20.025
ECMWF 0.026 20.037
OISST 0.067 0.023
GEFS 1 ECMWF 0.075 0.026
GEFS 1 ECMWF 1 OISST 0.102 0.051
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members are required to reach saturation in our forecast skill.
Another mechanism to provide better forecasts would be to
have the forecast/reforecast framework on a daily time step.
Currently, the GEFS real-time forecasts are daily. However,
the GEFS is migrating its reforecasts and real-time forecasts
with lead times greater than 15 days to match those of
ECMWF. So, with the next version of GEFS, both models
will produce real-time forecasts twice per week. What this
means, is that some of the 15–28-day forecasts are in fact
16–29-, 17–30-, or 18–31-day forecasts. This will modestly
diminish the skill level for weeks 3–4. Further gains in forecast
skill can also be achieved by increasing the number of dyna-
mical weather models that are used to generate the ensemble.

Last, we compared the reforecast skills of the GEFS and
ECMWF, for week-3–4 reforecasts, to the skill achieved using
a relatively simple statistical-analog model based on daily
SSTs. The statistical OISST model was shown to outperform
both the GEFS and ECMWF models, individually. This was
true for both the Atlantic and the west Atlantic regions.
Additionally, a combination of this model plus GEFS and
ECMWF was found to statistically significantly improve the
skill with respect to the combination which only uses the
GEFS and ECMWF models. More sophisticated empirical-
statistical algorithms (Rasouli et al. 2012; Leng and Hall 2020;
Scheuerer et al. 2020) could potentially lead to further gains
in forecast skill. However, our statistical model outlined here
is not very difficult to implement, and we have shown it to be
effective. We are in the process of transitioning these fore-
casts into an operational setup in order to make real-time sub-
seasonal forecasts of week-3–4 ACE.

One potential explanation as to why such a simple statisti-
cal model can be shown to outperform the reforecasts of the
dynamical models relates to how the problem is framed. The
GEFS and ECMWF models perform numerical weather pre-
diction whereby an entire state system is advanced through a
set of equations governed by physical laws. These dynamical
models are not solely optimized to provide the best TC fore-
casts. Rather, the models are attempting to simultaneously
provide good forecasts for many different meteorological var-
iables. As a result, these models output an entire space–time
field of meteorological variables, and the values used to calcu-
late TCs are just a few of the many variables that these mod-
els produce. On the other hand, we have conditioned our
statistical model on SSTs with the explicit intention to provide
the best TC forecasts.

Tropical cyclones are extremely destructive and costly. In
the face of these natural disasters, improvements in forecasting
these events can lead to better preparedness. In turn, we aim to
minimize the devastation levied against affected communities.
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